# Piping Elbows and Bends

Piping and Bends are very important pipe fitting which are used very frequently for changing direction in piping system. Piping Elbow and Piping bend are not the same, even though sometimes these two terms are interchangeably used. A BEND is simply a generic term in piping for an “offset” – a change in direction of the piping. It signifies that there is a “bend” i.e, a change in direction of the piping (usually for some specific reason) – but it lacks specific, engineering definition as to direction and degree. Bends are usually made by using a bending machine (hot bending and cold bending) on site and suited for a specific need. Use of bends are economic as it reduces number of expensive fittings.An ELBOW, on the other hand, is a specific, standard, engineered bend pre-fabricated as a spool piece (based on ASME B 16.9) and designed to either be screwed, flanged, or welded to the piping it is associated with. An elbow can be 45 degree or 90 degree. There can also be custom-designed , although most are catagorized as either “short radius” or long radius”.

In short “All bends are elbows but all elbows are not bend”

Whenever the term elbow is used, it must also carry the qualifiers of type (45 or 90 degree) and radius (short or long) – besides the nominal size.

Elbows can change direction to any angle as per requirement. An elbow angle can be defined as the angle by which the flow direction deviates from its original flowing direction (See Fig.1 below).Even though An elbow angle can be anything greater than 0 but less or equal to 90°But still a change in direction greater than 90° at a single point is not desirable. Normally, a 45° and a 90° elbow combinedly used while making piping layouts for such situations.

Elbow angle can be easily calculated using simple geometrical technique of mathematics. Lets give an example for you. Refer to Fig.2. Pipe direction is changing at point A with the help of an elbow and again the direction is changing at the point G using another elbow.

In order to find out the elbow angle at A, it is necessary to consider a plane which contains the arms of the elbow. If there had been no change in direction at point A, the pipe would have moved along line AD but pipe is moving along line AG. Plane AFGD contains lines AD and AG and elbow angle (phi) is marked which denotes the angle by which the flow is deviating from its original direction.

Considering right angle triangle AGD, tan(phi) = √( x2 + z2)/y
Similarly elbow angle at G is given by : tan (phi1)=√ (y2 +z2)/x

Elbows or bends are available in various radii for a smooth change in direction which are expressed in terms of pipe nominal size expressed in inches. Elbows or bends are available in three radii,
a. Long radius elbows (Radius = 1.5D): used most frequently where there is a need to keep the frictional fluid pressure loss down to a minimum, there is ample space and volume to allow for a wider turn and generate less pressure drop.
b. Long radius elbows (Radius > 1.5D): Used sometimes for specific applications for transporting high viscous fluids likes slurry, low polymer etc. For radius more than 1.5D pipe bends are usually used and these can be made to any radius.However, 3D & 5D pipe bends are most commonly used
b. Short radius elbows (Radius = 1.0D): to be used only in locations where space does not permit use of long radies elbow and there is a need to reduce the cost of elbows. In jacketed piping the is used for the core pipe.
Here D is nominal pipe size in inches.
There are three major parameters which dictates the radius selection for elbow. Space availability, cost and pressure drop.
Pipe bends are preferred where pressure drop is of a major consideration.
Use of short radius elbows should be avoided as far as possible due to abrupt change in direction causing high pressure drop.

Minimum thickness requirement:

Whether an elbow or bend is used the minimum thickness requirement from code must be met. Code ASME B 31.3 provides equation for calculating minimum thickness required (t) in finished form for a given internal design pressure (P) as shown below:

Here,
R1 = bend radius of welding elbow or
D = outside diameter of pipe
W = weld joint strength reduction factor
Y = coefficient from Code Table 304.1.1
S = stress value for material from Table A-1 at maximum temperature
E = quality factor from Table A-1A or A-1B
Add any corrosion, erosion, mechanical allowances with this calculated value to get the thickness required.

End Connections:

For connecting elbow/bend to pipe the following type of end connections are available

Butt welded: Used alongwith large bore (>=2 inch) piping
Socket welded: Used alongwith pipe size
Screwed:
Flanged:
Butt welded Elbows:
Pipe is connected to butt welded elbow as shown in Fig. 4 by having a butt-welding joint.
Butt welded fittings are supplied with bevel ends suitable for welding to pipe. It is important to indicate the connected pipe thickness /schedule while ordering. All edge preparations for butt welding should conform to ASME B16.25.
of butt welded elbows are as per ASME B16.9. This standard is applicable for & butt weld fittings of NPS 1/2” through 48”.

• Dimensions of stainless steel butt welded fittings are as per MSS-SP-43. Physical dimensions for fittings are identical under ASME B16.9 and MSS-SP-43. It is implied that the scope of ASME B16.9 deals primarily with the wall thicknesses which are common to carbon and low alloy steel piping, whereas MSS-SP-43 deals specifically with schedule 5S & 10S in stainless steel piping.
• Dimensions for short radius elbows are as per ASME B16.28 in case of carbon steel & low alloy steel and MSS-SP-59 for stainless steel.
• Butt welded fittings are usually used for sizes 2” & above. However, for smaller sizes up to 1-1/2” on critical lines where use of socket welded joints is prohibited, pipe bends are normally used. These bends are usually of 5D radius and made at site by cold bending of pipe. Alternatively, butt welded elbows can be used in lieu of pipe bends but usually smaller dia lines are field routed and it is not possible to have the requirement known at initial stage of the project for procurement purpose. So pipe bends are preferred.
• However, pipe bends do occupy more space and particularly in pharmaceutical plants where major portion of piping is of small dia. and layout is congested, butt welded elbows are preferred.
• Butt welded joints can be radiographed and hence preferred for all critical services.

Material standards as applicable to butt welded fittings are as follows:

ASTM A234:

This specification covers wrought carbon steel & alloy steel fittings of seamless and welded construction. Unless seamless or welded construction is specified in order, either may be furnished at the option of the supplier. All welded construction fittings as per this standard are supplied with 100% radiography. Under ASTM A234, several grades are available depending upon chemical composition. Selection would depend upon pipe material connected to these fittings.

Some of the grades available under this specification and corresponding connected pipe material specification are listed below:

ASTM A403:

This specification covers two general classes, WP & CR, of wrought austenitic of seamless and welded construction.
Class WP fittings are manufactured to the requirements of ASME B16.9 & ASME B16.28 and are subdivided into three subclasses as follows:
WP – SManufactured from seamless product by a seamless method of manufacture.
WP – W These fittings contain welds and all welds made by the fitting manufacturer including starting pipe weld if the pipe was welded with the addition of filler material are radiographed. However no radiography is done for the starting pipe weld if the pipe was welded without the addition of filler material.
WP-WX These fittings contain welds and all welds whether made by the fitting manufacturer or by the starting material manufacturer are radiographed.
Class CR fittings are manufactured to the requirements of MSS-SP-43 and do not require non-destructive examination.
Under ASTM A403 several grades are available depending upon chemical composition. Selection would depend upon pipe material connected to these fittings. Some of the grades available under this specification and corresponding connected pipe material specification are listed below:

:
This specification covers wrought carbon steel and alloy steel fittings of seamless & welded construction intended for use at low temperatures. It covers four grades WPL6, WPL9, WPL3 & WPL8 depending upon chemical composition. Fittings WPL6 are impact tested at temp – 50° C, WPL9 at -75° C, WPL3 at -100° C and WPL8 at -195° C temperature.
The allowable pressure ratings for fittings may be calculated as for straight seamless pipe in accordance with the rules established in the applicable section of ASME B31.3.
The pipe wall thickness and material type shall be that with which the fittings have been ordered to be used, their identity on the fittings is in lieu of pressure rating markings.

Related products maybe you like
ASTM A815/A815M
ASTM A403/A403M
Stainless Steel Flanges
Types of Used in Piping
What is a Butt Weld (Buttweld) Fitting?
Butt weld fittings
ELBOWS BUTT-WELDING ACC. WITH ASTM-A234 GRADE WP11
ASTM A420 Standard Specification